Derivatives Of Inverse Trigonometric Functions

Derivatives Of Inverse Trigonometric Functions
Derivatives Of Inverse Trigonometric Functions

lunes, 10 de diciembre de 2012

Derivatives Of Trigonometric Functions

Trigonometric Functions

The general formulas for diferentiating trigonometric functions are:



Remember that u stands for a function, therefore, after using the general rules include the derivative of u from the inside of the trigonometric function.


Example 1: Find the derivative of the folloiwing function.

a) f(x) = sin(3x^2 + 6x -5)

    f `(x) = (6x + 6) cos(3x^2 + 6x -5)
    f `(x) = 6 (x + 1) cos(3x^2 + 6x -5)


b) f(x) = sec(lnx)

    f `(x) = sec(lnx) * tan(lnx) * (1/x)
    f `(x) = sec(lnx)tan(lnx)
                         x


c) f(x) = cot(sinx)

    f `(x) = - (csc(sinx))^2 * cosx


d) f(x) = (cos(sin3x))^2

    f `(x) = 2*cos(sin3x)*sin(sin3x)*cos(3x)*3
    f `(x) = 6*cos(sin3x)*sin(sin3x)*cos(3x)


NOTE: The chain rule was also used in this problem. If you are unfamiliar with the chain rule, click the image of the trigonometric functions. If not, a video is supplied.



For extra problems and practice, click here.

No hay comentarios:

Publicar un comentario